On Convexity of Polynomials over a Box

Georgina Hall
Decision Sciences, INSEAD
Joint work with
Amir Ali Ahmadi
ORFE, Princeton University

Convexity over a box

- A box \boldsymbol{B} is a set of the form:

$$
B=\left\{x \in \mathbb{R}^{n} \mid l_{i} \leq x_{i} \leq u_{i}, i=1, \ldots, n\right\}
$$ where $l_{1}, \ldots, l_{n}, u_{1}, \ldots, u_{n} \in \mathbb{R}$ with $l_{i} \leq u_{i}$.

- A function \boldsymbol{f} is convex over \boldsymbol{B} if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for any $x, y \in B$ and $\lambda \in[0,1]$.

- If \boldsymbol{B} is full dimensional (i.e., $l_{i}<u_{i}, i=1, \ldots, n$), this is equivalent to

$$
\nabla^{2} f(x) \geqslant 0, \forall x \in B .
$$

Complexity questions

Goal: study the complexity of testing convexity of a function over a box

- Restrict ourselves to polynomial functions.
- Related work:

Problem 6. N.Z. Shor proposed the question: Given a degree-4 polynomial of n variables, what is the complexity of determining whether this polynomial describes a convex function?
Theorem [Ahmadi, Olshevsky, Parrilo, Tsitsiklis] It is strongly NP-hard to test (global) convexity of polynomials of degree 4.

> NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems
> Amir Ali Ahmadi, Alex Olshevsky, Pablo A. Parrilo, and John N. Tsitsikis *

- One may hope that adding the restriction to a box could make things easier.

Theorem [Ahmadi, H.]

It is strongly NP-hard to test convexity of polynomials of degree 3 over a box.
Why are we interested in convexity over a box?

Detecting

- Nonconvex optimization: branch-and-bound

- Prior work:
- Sufficient conditions for convexity [Orban et al.], [Grant et al.]
- In practice, BARON, CVX, Gurobi check convexity of quadratics and computationally tractable sufficient conditions for convexity

Imposing

- Control theory: convex Lyapunov functions [Ahmadi and Jungers] [Chesi and Hung]
- Statistics: convex regression

Proof of the theorem

Theorem [Ahmadi, H.]
It is strongly NP-hard to test convexity of polynomials of degree 3 over a box.

How to prove this?
In general:

Question: What to do a reduction from?

Idea: A cubic polynomial f is convex over a (full-dimensional) box B if and only if $\nabla^{2} f(x) \succcurlyeq 0, \forall x \in B$
$\nabla^{2} f(x)$ is a matrix with entries affine in x

Theorem [Nemirovski]:

Let $L(x)$ be a matrix with entries affine in x. It is NP-hard to test whether $L(x) \succcurlyeq 0$ for all x in a full-dimensional box B.

Are we done?

No!
Issue 1: We want to show strong NP-hardness. Nemirovski's result shows weak NPhardness.

Issue 2: Not every affine polynomial matrix is a valid Hessian!
Example: $L\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}10 & 2 x_{1}+1 \\ 2 x_{1}+1 & 10\end{array}\right)$. We have $\frac{\partial L_{11}(x)}{\partial x_{2}} \neq \frac{\partial L_{12}(x)}{\partial x_{1}}$.

Dealing with Issue 1 (1/5)

Reminder: weak vs strong NP-hardness

- Distinction only concerns problems where input is numerical
- Max(I): largest number in magnitude that appears in the input of instance I (numerator or denominator)
- Length(I): number of bits it takes to write down input of instance I

Strong	Weak
- There are instances I that are hard with	
$\operatorname{Max}(I) \leq p($ Length $(I))(p$ is a polynomial)	- The instances that are hard may contain
numbers of large magnitude $\left(\right.$ e.g., $\left.2^{n}\right)$.	

Dealing with Issue 1 (2/5)

Theorem [Nemirovski]: INTERVAL-PSDNESS

Let $L(x)$ be a matrix with entries affine in x.
It is (weakly) NP-hard to test whether $L(x) \succcurlyeq 0$ for all x in a full-dimensional box B.
Why weakly NP-hard?

Input: $a \in \mathbb{R}^{n}$ such that $\|a\|_{2} \leq 0.1$
Test: does there exist $t \in\{-1,1\}^{n}$ such that $\sum_{i} a_{i} t_{i}=0$?

INTERVAL PSDNESS

REDUCTION
Construct: $C=(\square)^{-1}$,
$\mu=n-d^{-2}(a)$, where $d(a)=$ smallest cd of a.

Take: $B=[-1,1]^{n}$ and $L(x)=\left(\begin{array}{cc}C & x \\ x^{T} & \mu\end{array}\right)$
Test: Is $L(x) \succcurlyeq 0 \forall x \in B$?
Show: No to PARTITION \Leftrightarrow Yes to INTERVAL PSDNESS

Operation that can make the numbers in the instance blow up
Example: $A=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ \vdots & \ddots & \ddots & 0 \\ -1 & -1 & -1 & 1\end{array}\right)$ but one of the entries of A^{-1} is 2^{n-2} !

Dealing with Issue 1 (3/5)

Theorem [Ahmadi, H.]: INTERVAL-PSDNESS

Let $L(x)$ be a matrix with entries affine in x.
It is strongly NP-hard to test whether $L(x) \geqslant 0$ for all x in a full-dimensional box B.

MAX-CUT:

Input: simple graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with $|V|=n$ and adj. matrix A , and a positive integer $k \leq n^{2}$

Test: does there exist a cut in the graph of size greater or equal to k ?

INTERVAL PSDNESS

REDUCTION
Preserves strong NP-hardness

$$
\begin{aligned}
& \text { Construct: } \alpha=\frac{1}{(n+1)^{3}}, C=4 \alpha\left(I_{n}+\alpha A\right) \\
& \qquad \mu=\frac{n}{4 \alpha}+k-1-\frac{1}{4} e^{T} A e \\
& \text { Take: } B=[-1,1]^{n} \text { and } L(x)=\left(\begin{array}{cc}
C & x \\
x^{T} & \mu
\end{array}\right) . \\
& \text { Test: Is } L(x) \succcurlyeq 0 \forall x \in B \text { ? }
\end{aligned}
$$

Show: No to MAX-CUT \Leftrightarrow Yes to INTERVAL PSDNESS
Strongly NP-hard

Taylor series of $4 \alpha(I-\alpha A)^{-1}$ truncated at the first term

Scaling needed so that $\left(I_{n}-\alpha A\right)^{-1} \approx I_{n}+\alpha A$

Dealing with Issue 1 (4/5)

In more detail: No to MAX-CUT \Rightarrow Yes to INTERVAL PSDNESS

$$
\begin{aligned}
& \text { No cut in } G \text { of size } \geq k \Leftrightarrow \underbrace{\underbrace{[\max }_{x \in\{-1,1\}^{n}} \frac{1}{4} \sum_{i, j} A_{i j}\left(1-x_{i} x_{j}\right)]}_{\text {Convex }} \leq k-1 \\
& \begin{array}{c}
{\left[\max _{x \in\{-1,1\}^{n}} \frac{1}{4} x^{T}\left((n+1)^{3} I_{n}-A\right) x\right] \leq \frac{n(n+1)^{3}}{4}-} \\
\frac{1}{4} e^{T} A e+k-1:=\mu
\end{array} \\
& \mathbb{I} \alpha=(n+1)^{3} \\
& { }^{\left[\max _{x \in[-1,1]} \frac{1}{4} x^{T}\left(\alpha I_{n}-A\right) x\right] \leq \mu} \Leftrightarrow \stackrel{\frac{1}{4} x^{T}\left(\alpha I_{n}-A\right) x \leq}{ } \Leftrightarrow \text { Approximation } C^{-1} \approx\left(\frac{1}{4}(\alpha I-A)\right) \Downarrow \\
& L(x)=\left(\begin{array}{cc}
C & x \\
x^{T} & \mu+\frac{1}{4}
\end{array}\right) \succcurlyeq 0, \forall x \in[-1,1]^{n} \\
& \Leftrightarrow \\
& {\left[\max _{x \in\{-1,1\}^{n}}-\frac{1}{4} x^{T} A x\right] \leq-\frac{1}{4} e^{T} A e+k-1} \\
& \text { scour } \quad x^{T} C^{-1} x \leq \mu+\frac{1}{4}, \forall x \in[-1,1]^{n}
\end{aligned}
$$

Dealing with Issue 1 (5/5)

For converse: Yes to MAX-CUT \Rightarrow No to INTERVAL PSDNESS

$$
\begin{array}{r}
\text { Let } \hat{x}_{i}=\left\{\begin{array}{c}
\text { There is a cut of size } \geq k: \\
1 \text { if node } i \text { on one side of cut } \\
-1 \text { if node } i \text { on other side of cut }
\end{array}\right.
\end{array} \Rightarrow \begin{array}{|}
\begin{array}{c}
\text { Similar steps } \\
\text { to previously }
\end{array} & \Rightarrow \begin{array}{|}
\hat{x}^{T} C^{-1} \hat{x} \geq \mu+\frac{3}{4}>\mu+\frac{1}{4} \\
\Downarrow
\end{array} \\
\exists \hat{x} \in[-1,1]^{n} \text { s.t. } L(\hat{x}) \nsucceq 0
\end{array}
$$

Corollary [Ahmadi, H.]: Let n be an integer and let $\hat{q}_{i j}, \bar{q}_{i j}$ be rational numbers
with $\hat{q}_{i j} \leq \bar{q}_{i j}$ and $\hat{q}_{i j}=\hat{q}_{j i}$ and $\bar{q}_{i j}=\bar{q}_{j i}$ for all $i=1, \ldots, n$ and $j=1, \ldots, n$. It is strongly NP-hard to test whether all symmetric matrices with entries in $\left[\hat{q}_{i j} ; \bar{q}_{i j}\right]$ are positive semidefinite.

- Initial problem studied by Nemirovski
- Of independent interest in robust control

Dealing with Issue $2(1 / 3)$

Theorem [Ahmadi, H.] CONV3BOX

It is strongly NP-hard to test convexity of polynomials of degree 3 over a box.

Proof: Reduction from INTERVAL PSDNESS

INTERVAL PSDNESS
Input: $L(x), \hat{B}$
Test: Is $L(x) \succcurlyeq 0, \forall x \in \hat{B}$?

Problem: How to construct a cubic polynomial f from $L(x)$?
Idea: Want $\nabla^{2} f(x)=L(x)$.
Issue: Not all $L(x)$ are valid Hessians!

Key ideas for the construction of f :

- Start with $f(x, y)=\frac{1}{2} y^{T} L(x) y$
- For $\nabla^{2} f(x, y)$ to be able to be psd when $L(x) \succcurlyeq 0$, we need to have a nonzero diagonal: add $\frac{\alpha}{2} x^{T} x$ to $f(x, y)$.
- $L(x)$ and $H(y)$ do not depend on the same variable: what if

$$
\nabla^{2} f(x, y)=\left[\begin{array}{cc}
\alpha I_{n} & \frac{1}{2} H(y) \\
\frac{1}{2} H(y)^{T} & L(x)+\eta I_{n+1}
\end{array}\right]
$$ $\exists(x, y)$ s.t. $L(x)=0$ but $H(y)$ is not? The matrix cannot be psd: add $\frac{\eta}{2} y^{T} y$ to $f(x, y)$.

$$
\Rightarrow f(x)=\frac{1}{2} y^{T} L(x) y+\frac{\alpha}{2} x^{T} x+\frac{\eta}{2} y^{T} y, \quad B=[-1,1]^{2 n+1}
$$

Dealing with Issue $2(2 / 3)$

Show NO to INTERVAL PSDNESS \Rightarrow NO to CONV3BOX.
This is equivalent to:

$$
\exists \bar{x} \in[-1,1]^{n} \text { s.t. } L(\bar{x}) \not \ni 0 \Rightarrow \exists \hat{x}, \hat{y} \in[-1,1]^{2 n+1}, z \text { s.t. } z^{T} \nabla^{2} f(\hat{x}, \hat{y}) z<0
$$

Need to leverage extra structure of $L(x): \quad L(x)=\left(\begin{array}{cc}C & x \\ x^{T} & \mu+\frac{1}{4}\end{array}\right)$

$$
\text { Candidates: } \quad \hat{x}=\bar{x}, \quad \hat{y}=0, \quad \mathbf{z}=\left(\begin{array}{c}
\mathbf{0} \\
-C^{-1} \bar{x} \\
\mathbf{1}
\end{array}\right)
$$

$$
z^{T} \nabla^{2} f(\hat{x}, \hat{y}) z=\left(\begin{array}{c}
0 \\
-C^{-1} \bar{x} \\
1
\end{array}\right)^{T}\left(\begin{array}{ccc}
\alpha I_{n} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{C}+\eta I_{n} & \overline{\boldsymbol{x}} \\
\mathbf{0} & \overline{\boldsymbol{x}}^{\boldsymbol{T}} & \boldsymbol{\mu}+\frac{\mathbf{1}}{\mathbf{4}}+\eta
\end{array}\right)\left(\begin{array}{c}
0 \\
-C^{-1} \bar{x} \\
1
\end{array}\right)=\mu+\frac{1}{4}-\bar{x}^{T} C^{-1} \bar{x}+\eta\left(1+\left\|C^{-1} \bar{x}\right\|_{2}^{2}\right)
$$

Dealing with Issue $2(3 / 3)$

Show YES to INTERVAL PSDNESS \Rightarrow YES to CONV3BOX.
This is equivalent to:

$$
L(x) \succcurlyeq 0 \forall x \in[-1,1]^{n} \Rightarrow \nabla^{2} f(x, y)=\left[\begin{array}{cc}
\alpha I_{n} & \frac{1}{2} H(y) \\
\frac{1}{2} H(y)^{T} & L(x)+\eta I_{n+1}
\end{array}\right] \geqslant 0, \forall(x, y) \in[-1,1]^{2 n+1}
$$

But...
$\nabla^{2} f(x, y) \succcurlyeq 0, \forall(x, y) \in[-1,1]^{2 n+1}$

Corollary

Completely classifies the complexity of testing convexity of a polynomial f of degree d over a box for any integer $d \geq 1$.

Proof sketch:

- $g\left(x_{1}, \ldots, x_{n}\right)=$ cubic polynomial for which testing convexity over a box B is hard
- $f\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=g\left(x_{1}, \ldots, x_{n}\right)+x_{n+1}^{d}$
- $\tilde{B}=B \times[0,1]$

We have $\nabla^{2} f\left(x, x_{n+1}\right)=\left(\begin{array}{cc}\nabla^{2} g(x) & 0 \\ 0 & d(d-1) x_{n+1}^{d-2}\end{array}\right)$
$\Rightarrow \nabla^{2} f\left(x, x_{n+1}\right) \succcurlyeq 0$ on $\tilde{B} \Leftrightarrow \nabla^{2} g(x) \succcurlyeq 0$ on B

Summary

- Interested in testing convexity of a polynomial over a box.

- Showed that strongly NP-hard to test convexity of cubics over a box.
- Gave a complete characterization of the complexity of testing convexity over a box depending on the degree of the polynomial.
- In the process, strengthened a result on the complexity of testing positive semidefiniteness of symmetric matrices with entries belonging to intervals.

Thank you for listening

Questions?

Want to learn more? https://scholar.princeton.edu/ghall

